
humane
assessment
the missing software engineering method

www.tudorgirba.com 
www.humane-assessment.com

tudor gîrba

http://www.humane-assessment.com
http://www.tudorgirba.com
http://www.tudorgirba.com
http://www.humane-assessment.com
http://www.humane-assessment.com


The goal of  assessment is decision 
making. Everyone makes decisions. 
Managers decide about the overall 
development. Architects decide the 
broad technical direction. And so do 
software engineers: they decide daily 
the course of  the implementation.

In fact, several studies report that 
software engineers spend up to 50% 
of  the time assessing the state of  the 
system to know what to do next. In 
other words, assessment accounts for 
half  of  the development budget. 
These are just the direct costs. The 
indirect costs can be observed in the 
quality of  the decisions that result 
from it.

Assessment must be recognized 
explicitly and approached as a 

distinct discipline. It is too important 
to do otherwise. Only by making it 
explicit can it be optimized. The 
challenge is significant because it 
requires a paradigm shift. The 
promise lies in the costs that can be 
decreased when going from ad-hoc 
to structured. But, the good news is 
that the budget is already allocated 
and is being spent.

Software systems are not only large, 
but they are complex in contextual 
ways. To be effective, assessment 
must be tailored to deal with the 
context of  the system and of  the 
problem at hand.

The ability to assess a situation is a 
skill. Like any skill, it needs to be 
educated. From a technological point 

of  view, a tool that checks software is 
software, too, and software engineers 
already know how to produce 
software. The challenge is to shift the 
focus from what to develop, to how 
to check what to develop. 

Assessment is expensive. 

Make it manageable by 
making it explicit. 

Make it effective by 
tailoring it to your needs. 

Make it efficient by 
educating your skills.

Assessment is expensive and you already pay for it



tailored

explicit

assessmentdevelopment

educated

must be

Assessment accounts for as much as half of the software development effort. 
These are just the direct costs. The indirect costs can be observed in the quality 
of the decisions that result from it. 

Currently, it is approached ad-hoc and ineffective. This must be changed.



Software assessment is a critical 
activity that is too expensive to 
approach in an ad-hoc manner. 

In practice developers mostly rely on 
code reading. This solution provides 
fine grained details, but it does not 
scale when we want to reason about a 
system as a whole. To put it in 
perspective, a person that reads one 
line in two-seconds would require 
approximately one month of  work to 
read a quarter of  a million lines of  
code. 

Nobody has this amount of  time at 
their disposal. Thus, the reading is 
typically limited to a part of  the 
system, while the overview is left for 
the drawing board from the 
architect's office. Following this 

strategy, most decisions tend to be 
local, while the strategic ones are 
mostly based on inaccurate or dated 
information.

To rectify the situation you need 
tools that help us crunch the vastness 
of  data. However, not any tool does 
the job. Many tools exist to deal with 
various aspects of  data and software 
analysis, but most of  them take the 
oracle way: they offer some 
predefined analyses that provide 
answers to standard questions.

Receiving a standard answer is great 
when you have a standard question. 
However, it turns out that most of  
the time our questions are not quite 
standard. Software systems tend to 
present many contextual details due 

to various factors: different 
technologies, different third party 
libraries, different architecture 
decisions and so on. In these 
situations, regardless how smart the 
analysis is, it is of  limited use if  it 
does not allow us to contextualize it.

The essence of the 
humane assessment 
method consists in crafting 
tailored tools for carrying 
out dedicated analyses.

Software assessment needs rethinking 



hypothesize existing
analysis?

craft
analysis

apply
analysis

interpret
resultsconfident?

act
The end goal of assessment is 
decision making. The process must 
end with a definite path of action. 
Only then it has practical impact. 

Formulate and refine 
hypotheses explicitly. This 
is the driving force behind 
the assessment effort.

Software systems are complex 
and they present plenty of 
context-specific problems. A 
custom problem requires a custom 
solution. To be effective, it is 
critical to craft an analysis tool for 
it. This is an activity that must be 
captured explicitly as part of the 
development process.

Regardless how smart an analysis is, it 
still only produces another set of data. 
It is the human that must interpret the 
results to decide what to do next.

www.humane-assessment.com 

http://www.humane-assessment.com
http://www.humane-assessment.com


Decisions must be taken everyday. 
Every time you scrutinize a software 
artifact to figure out what to do next, 
you are actually performing an 
assessment. 

Assessment has to be 
embedded in the 
development process and 
in the organization.

Assessment must become a daily 
reality. The core idea of  the humane 
assessment method is for engineers 
to craft and rely on tailored tools. 
This offers a general guideline for 
approaching assessment in a 
systematic way. 

However, to get the method effective 
during development, we need to take 

a step further and integrate it in 
subprocesses of  the overall 
development process.

Assessment must always have a 
problem at the center. Depending on 
the nature of  this problem, there are 
several ways to integrate the method 
in the development process: as a daily 
assessment routine to capture, 
document and improve the state of  
the system; as spike assessments to 
support fast decision making; or as 
strategic assessments to support 
coarse grained decision making.

Assessment requires dedicated skills. 
To ensure their presence, you have to 
capture it in the organization through 
explicit roles that carry the dedicated 
knowledge. Two distinct roles are 

critical: the stakeholder and the 
facilitator. 

A stakeholder can be either a 
technical or non-technical team 
member. She owns the problem and 
is the driver of  the assessment effort. 
The facilitator is an engineer whose 
main goal is to ensure a smooth 
dialogue between the stakeholders 
and the system. He makes certain 
that the cost of  assessment remains 
accessible for the stakeholders.

An important component of  
assessment is indeed the tool 
infrastructure. Moose offers such an 
infrastructure that makes assessment 
practical. However, in the end, it is 
the skills and activities of  the team 
that make the difference.  

Adopting humane assessment



organization

www.humane-assessment.com goal and problem

craft
analysis

processes

daily
assessment

spike
assessment

strategic
assessment

facilitator

stakeholder

helps

department

forms

tooling

buildup

throwaway

decision
making

assessment

development

http://www.humane-assessment.com
http://www.humane-assessment.com


Assessment requires a tool 
infrastructure that makes it practical 
to build custom analysis solutions for 
your systems and your problems. You 
need to control your effort with an 
appropriate infrastructure.

The Moose analysis platform was 
designed for it. Moose is an extensive 
platform for software and data 
analysis that makes software 
assessment practical.

It is a free and open-source project 
started in 1996. Since then it grew 
and it is now developed in several 
research groups and it is increasingly 
being applied in industrial contexts. 
In total, the effort spent on Moose 
raises to more than 150 person-years 
of  research and development.

The design of  Moose is rooted in the 
core idea of  placing the analyst at the 
center and of  empowering him to 
build and to control the analysis 
every step of  the way.

Data from various sources and in 
various formats is imported and 
stored in a model. For example, 
Moose can handle out of  the box 
various languages such as: Java, 
Smalltalk, or C/C++.

On top of  the created model, the 
analyst performs analyses, combines 
and compares the analyses to find 
answers to specific questions. Moose 
enables this in two distinct ways. On 
the one hand, Moose comes with 
multiple predefined services such as: 
parsing, modeling, metrics 

computation, visualization, data 
mining, duplication detection, or 
querying. These basic services are 
aggregated into more complex 
analyses like computation of  
dependency cycles, detection of  high 
level design problems, identification 
of  exceptional entities and so on. On 
the other hand, Moose is more than a 
tool. Moose is a platform that offers 
an infrastructure through which new 
analyses can be quickly built and can 
be embodied in new interactive tools.

Using Moose we can easily 
define new analyses, create 
new visualizations, or build 
complete browsers and 
reporting tools altogether.

Moose makes assessment practical



engines

importers analysesmodelsdata

The Moose workflow
www.moosetechnology.org
www.themoosebook.org

Various kinds of data in various 
formats can be imported into 
Moose. Typical examples are 
software systems written in 
languages like Java or C++.

Moose offers various tools 
that deal with metrics, 
clustering, querying, 
visualizing, and interactive 
browsing. A key concept is 
that the result obtained 
after applying a specific 
analysis tool are fed back 
into the model and are 
available for further 
analysis. This enables an 
iterative process in which 
the analysis is built and 
refined gradually.

Moose offers generic engines that enable the 
analyst to craft new tools fast: from parsers, to 
models, and to visual and interactive tools.

http://www.moosetechnology.org
http://www.moosetechnology.org
http://www.themoosebook.org
http://www.themoosebook.org


The System Complexity is a 
polymetric view that shows classes as 
nodes and inheritance as edges. 
Furthermore, each node is enhanced 
visually with three metrics: the height 
is given by the number of  methods, 
the width is given by the number of  
attributes, and the color is given by 
the number of  lines of  code.

Visualizing class hierarchies

System Complexity



While the System Complexity 
visualization shows the overall class 
hierarchies, the Class Blueprint shows 
the internals of  classes.

The figure to the right shows an 
example of  a class with multiple 
methods. The figure to the bottom 
shows a larger hierarchy.

Visualizing the internal structure of classes

Class Blueprint



The Dependency Structure Matrix is 
a visualization that shows the 
dependencies between modules at a 
coarse grained level.

The list of  modules is shown on 
both rows and columns and each dot 
represents a dependency. The 
algorithm tries to place all dots below  
the diagonal. If  a dot appears above 
the diagonal, it signifies that a cycle 
was detected in the system. The 
visualization highlights these cyclic 
dependencies with a shaded 
background.

In the example to the right, we have a 
system with more than 100 packages. 
In total there are four cycles, of  
which one formed by multiple 
modules.

Visualizing dependencies between modules

Dependency Structure Matrix 



The previous pages show a couple of 
classic visualizations. While they 
provide valuable views over a 
software system, they are only some 
of  the visualizations offered. Two of  
these are shown to the right.

The first reveals the complexity 
introduced by source code 
annotations. In the example, we see 
the types of  annotations used in a 
system and how they are related.

The second shows how source code 
duplications appear between parts of 
the system. In the example, we see 
the same packages on each column, 
and a connection between them 
denotes a duplication: internal if  the 
line is horizontal, or external if  the 
line is oblique.

Other software visualizations

Annotation constellation Side-by-side duplications



Visualizations provide maps of  what 
otherwise is intangible information. 
Using these maps we can get a sense 
of  the structure of  the large amounts 
of  data. Another mechanism for 
understanding data is querying. 
Queries are instructions given to the 
computer to retrieve a part of  the 
data that conforms to the given 
predicate. Thus, they help the analyst 
to focus on smaller set of  data.

Moose offers a rich scripting API. 
Furthermore, it also offers the 
possibility to relate multiple views, 
such as query results and 
visualizations. For example, the 
picture to the right highlights a set of 
classes detected as being flawed on 
an overall System Complexity 
visualization.

Querying models



Moose offers multiple tools and 
mechanisms for exploration. The 
basic exploration tool offers a generic 
user interface that can navigate 
through any model, be it of  source 
code or otherwise.

The tool employs a Finder-like 
design: selecting any entity spawns 
the details of  this entity to the right. 
The details can be presented in 
various forms (such as simple lists, 
tables, or visualizations), each of  
these forms offering a high degree of 
interaction.

For example, the screenshot at the 
top shows a list of  classes to the left 
and the result of  a query is spawned 
to the right. The screenshot to the 
bottom shows various visualizations.

Browsing models



When we deal with source code, we 
want specialized views. Moose offers 
multiple browsers that focus on 
various aspects. For example, the 
browser to the bottom highlights the 
dependencies of  the current class.

Browsing source code



Often, we need dedicated 
visualizations. Moose allows the 
analyst to build such specific 
visualizations through a domain 
specific scripting interface.

The screenshot to the right shows 
the Mondrian Easel, a dedicated 
editor for such visualizations. The 
presented example, shows how 
concise it is to draw a System 
Complexity view of  a set of  classes.

Using this infrastructure, we can 
build in a concise and declarative way 
visualizations that exhibit patterns 
specific to the data and the problem 
of  interest.

Most visualizations in Moose are 
drawn using this engine.

Painting custom visualizations



Large models hold many 
details. To tame these 
models, we need interactive 
browsers that help us 
understand their inner 
structure and relationships.

Moose offers Glamour, an 
engine for building custom 
interactive tools. For 
example, the script to the 
right builds a complete code 
browser that displays 
packages, classes, methods 
and source code.

Using this engine, Moose 
enables the analyst to craft 
quickly custom tools that 
target custom data sets, or 
custom navigation use cases.

Crafting custom tools



To analyze software systems, we first 
need to be able to parse them. Moose 
comes with PetitParser, a generic 
framework for defining dedicated 
parsers.

For example, the pictures to the right 
shows the PetitParser development 
tool open on a part of  the grammar 
of  the MSE file format, the default 
format for models import/export. 
The development tool offers multiple 
perspectives including a graphical 
representation, a grammar cycle 
detection, and a debugger.

This infrastructure enables the 
analyst to analyze various data 
sources spanning from domain 
specific languages to custom 
configuration files.

Parsing new languages



While a significant part of  Moose is 
focused on providing interactive 
capabilities to build and perform 
analysis, it is often desirable to carve 
in stone a set of  concerns that we 
want to watch for, and afterwards 
have a tool to check them and to 
produce a report. Moose offers a 
report building engine that enables 
the analyst to define custom 
concerns.

In the example to the right, we have a 
report on a source code model 
checking several concerns. The 
concerns are marked in red because 
violations were found in the system. 
This, these concerns can act like tests 
against the model. Furthermore, 
concerns can also be visualized 
various ways.

Building live reports



the
book

w
w

w
.t

h
e
m

o
o
se

b
o
o
k.

o
rg the book

that shows
the outside 
the inside and
the philosophy of
the Moose platform

by Tudor Gîrba



Our client was responsible for the 
development and maintenance of  
multiple software projects. The teams 
were following a Scrum-based 
development process, but as the size 
of  the projects increased, the need 
for a continuous assessment of  the 
systems became apparent to ensure 
the quality and compliance of  the 
work. We were mandated to improve 
this state by introducing daily 
assessment.

We approached these issues in two 
ways: (1) we introduced custom 
reporting tools, and (2), we coached 
the teams to make their decisions 
explicit, and to check them against 
the reality of  the system.

To get stakeholders to define their 
concerns explicitly, we held several 
interactive workshops in which we 
identified problems and showed how 
these can be answered fast. We then 
encoded these concerns into rules 
that addressed several areas including 
quality assurance and documentation. 

We used Moose to craft the reporting 
tools. These tools were integrated 
into the continuous integration 
process and provided continuous and 
contextual feedback about how the 
concerns were reflected in the 
system. An example of  such a report 
can be seen on the next page.

The most important component of  
our work was to affect the 
development process to get the team 

take the actual state of  the system 
into account and to correct the 
situation continuously.

First, the concerns were made 
explicit and captured in form of  
rules that were integrated into the 
continuous reporting. The detected 
problems were discussed on a daily 
basis in a dedicated standup meeting. 
If  the rule was considered valid, it 
was either resolved immediately, or 
planned for a later iteration. If  it was 
determined that the concern was not 
valid, the rule was adjusted.

The quality of  the projects improved 
in a short amount of  time with only 
little overall overhead, and the 
confidence of  the team and 
management increased.

Success story: Daily assessment in Scrum projects

http://www.humane-assessment.com/minibook/daily/?_s=zMqhbaSpqOwDqrLM&_k=-uAaCxCfI_rV7Odo&_n&12
http://www.humane-assessment.com/minibook/daily/?_s=zMqhbaSpqOwDqrLM&_k=-uAaCxCfI_rV7Odo&_n&12
http://www.humane-assessment.com/minibook/daily/?_s=zMqhbaSpqOwDqrLM&_k=-uAaCxCfI_rV7Odo&_n&12
http://www.humane-assessment.com/minibook/daily/?_s=zMqhbaSpqOwDqrLM&_k=-uAaCxCfI_rV7Odo&_n&12


Example of a Moose report integrated into the Hudson continuous integration server.



Our client’s IT-Architecture 
department published a set of  
architectural guidelines and coding 
conventions for the internal and 
external software systems.  They 
needed a way to verify compliance of 
one of  their software system.

Our role was to review the 
application and verify its 
conformance to the guidelines.

The first step was to obtain an 
overview of  the system. We based 
our analysis on reading both 
technical and business 
documentation and on analyzing the 
actual source code.

Using the architecture descriptions, 
we focussed on checking the 

architectural layers and interface 
boundaries. We validated the coarse 
grained architectural rules. We used 
visualization techniques and applied 
several custom detection strategies to 
highlight points of  interest and 
irregularities in the code.

On closer inspection through queries 
and selective code reading, we 
identified a number of  guidelines 
violations. For example, one of  the 
detected shortcomings of  the 
application was the poor exception 
handling that violated the 
architectural constraints.

Once the non-conforming parts were 
identified, we proposed concrete 
recommendations for how to 

improve the structure of  the system 
to conform to the desired guidelines.

We also provided a summary of  the 
overall code quality. For this purpose 
we used several techniques such as 
metrics, queries and visualizations. 
Among others we pinpointed how 
the logic is distributed over the 
system and how the code duplication 
should be refactored.

The architectural violations were 
scheduled for refactoring before the 
application was to go into 
production.

Success story: Strategic assessment of architecture conformance



A visualization highlighting violations over the structure of the system



The client had a large software 
system composed of  several hundred 
subsystems, each being written in 
Java. The overall system was based 
on a custom engine that was put 
together using a multitude of  custom 
configuration files specified in XML 
and in another custom language. 
Given the particularities of  the 
project, a dedicated tool was needed 
to analyze it. 

We received the task of  crafting a 
dedicated tool that would be able to 
provide an overview of  these 
configurations and expose their 
various relationships.

The prerequisite for any data analysis 
is the specification of  the meta-
model for the data. Thus, the first 

step was the analysis of  the various 
configuration files with the aim of  
capturing the class diagram. The 
diagram on the next page shows the 
anonymized result of  the 
configuration analysis. Once the 
meta-model specified, we encoded it 
in the tool.

The next step was to create the 
importer to take all configuration 
files as input and then to create a 
coherent model.

An important challenge was posed by 
the unification of  data: because the 
system was developed over a decade, 
there were multiple ways of  
expressing the same information. 
Thus, our importing solution needed 
to deal with all these differences.

The last step was to create several 
analyses and visualizations on top of  
this model. These views were then 
integrated into an interactive tool. 
When used by developers, the tool 
revealed several unexpected 
dependencies and incomplete 
specifications in the system. 

For putting together this solution, we 
used the tool building capabilities of  
Moose.

All in all, the development effort for 
the prototype totaled a mere 10 
person-days. Placed in the overall 
context of  the multiple hundred 
person-years of  development effort 
spent in the project, it was an 
insignificant investment with high 
return on investment.

Success story: Custom analysis tool for custom configurations



A part of the custom tool for dependency overviewA schematic view of the complex meta-model

 

B

 

L

 

C

 

A

 

I

 

O

 

E

 

M

*

*

*

 

F

 

G

 

H

 

D

*

 

J *

*

 

K

*

 

P

*

 

Q

*



The client had a mission-critical long 
living system written in multiple 
languages. The system offered a rich 
user interface built through many 
interconnected forms. Furthermore, 
an important feature of  the system 
consisted in a proprietary language 
that could be used to customize or to 
create new modules.

Over more than a decade of  
development, a large amount of  
sources have accumulated. While the 
proprietary tools offered some 
support for developing in this 
language, they offered no analysis 
infrastructure, and because of  that 
mistakes could easily occur.

We were mandated to create a 
dedicated infrastructure for 

supporting the assessment of  
programs written in this language 
and to relate them to the overall 
forms structure.

One challenge was posed by the lack 
of  documentation of  both the 
language and the format of  the 
exported forms. Thus, we started 
with a reverse engineering effort. We 
adopted an iterative approach 
through which we combined 
developer interviews for recovering 
the meaning of  instructions, and 
testing to check the accuracy of  the 
produced parsers and importers.

After two dozen days of  effort, we 
produced a first working version of  
the importer that could be used to 
produce a picture of  the systems.

Using this importer, we enabled the 
team to start encoding their own 
concerns to ease development and 
maintenance. It soon became 
apparent that the automatic checking 
revealed many areas for 
improvement. Thus, the team 
adopted the process of  continuous 
assessment and checked these 
concerns on a regular basis.

Another byproduct of  this project 
consisted in a set of  interactive 
browsers and visualizations meant to 
ease program comprehension. These 
were also used to ease the dialogue 
between the technical team and 
management concerning the status of 
the systems.

Success story: Analysis of systems written in a proprietary language



Problematic modules and their dependencies.



Description Results Example scenarios Duration

Assessment 
coaching

We coach companies to 
integrate assessment tools 
and practices in the 
development process and in 
the organization.

We help setting up 
assessment departments 
and we coach facilitators 
and stakeholders to work 
together on a daily basis. 

Teams that want to control 
the evolution of  the 
architecture, or that want to 
instill continuous quality 
assurance.

weeks or 
months

Strategic 
assessment

We help companies make 
strategic decisions by 
assessing the systems from 
their portfolios. 

We work together with the 
technical staff, we compile 
the results as a report, and 
we facilitate the decision 
making process.

Checking the conformance 
to wanted standards and 
designs; Supporting 
strategic decisions of  
rewrite / reengineer.

weeks

Tooling  
buildup

We offer the service of  
producing custom solutions 
for solving specific 
problems or for reporting 
on proprietary systems.

We use Moose as the 
underlying technical 
platform to deliver both 
exploratory and complete 
tools that provide support 
for decision making.

Analysis tools for 
proprietary languages, for 
domain-specific languages, 
for meta-data, or for 
proprietary configuration 
systems.

weeks

Services

www.humane-assessment.com

http://www.humane-assessment.com
http://www.humane-assessment.com


Description Audience Duration

Humane 
assessment 
primer

This course offers an introduction in the area of  software and data 
assessment, and provides an overview of  the strategies to integrate it in 
the development process and in the organization. The sessions are dialog-
oriented and cover issues related to managing assessment both from a 
technical and a process standpoint.

engineers              
architects             
managers

1-2 days

Moose 
shepherd

This is a technical introductory course to the Moose analysis platform. It 
teaches the use of  querying, code metrics, and visualizations. It also 
provides an introduction to parsing and to scripting custom concerns, 
visualizations and interactive browsers. The course sessions are 
accompanied by hands-on exercises which are typically based on case 
studies provided by the participants.

engineers              
architects

5 days

Moose    
hunter

This advanced course is focused on uncovering the full potential of  Moose 
through exercises of  scripting and of  extending the base functionality with 
new and custom detections, models, visualizations and tools. The course 
can be customized to match the context of  the participants.

engineers             
architects

2-5 days

Courses

www.humane-assessment.com

http://www.humane-assessment.com
http://www.humane-assessment.com


© 2011 Tudor Gîrba
www.tudorgirba.com
tudor@tudorgirba.com

Tudor Gîrba attained his PhD in 2005, 
and he now works as a consultant. His 
main expertise lies in the area of  
software engineering with focus on 
software and data assessment.

Since 2003, he leads the work on the 
Moose analysis platform. He published 
all sorts of  peer reviewed scientific 
articles, he served in program 
committees for several dozen 
international conferences and 
workshops, and he is regularly invited  
to give talks and lectures.

He developed the humane assessment 
method, and he is currently helping 
companies to assess and to manage 
large software systems and data sets.

http://www.tudorgirba.com
http://www.tudorgirba.com
mailto:tudor@tudorgirba.com
mailto:tudor@tudorgirba.com

